

Date: 08-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
1	Answer the following	
a)	What is a minimal polynomial.	
b)	Define projection operator.	
c)	Let V be a vector space over F and T be an operator on V . Show that $T - \alpha$ annihilator of α divides the minimal polynomial for T .	
d)	Give an example for an nilpotent matrix of order 3.	
e)	Write an Inner product on R^3 .	

SECTION A – K2 (CO1)

	Answer ALL the questions	(5 x 1 = 5)
2	MCQ	
a)	The characteristic values of T are 0 and 1. Then the characteristic values of $T^2 + 2T$ are i) 1,2 ii) 0, 3 iii) 4, -1 iv) -1, -2	
b)	Degree of the minimal polynomial of a matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ are i) 1 ii) 0 iii) 2 iv) 4	
c)	If V has a basis containing characteristic vectors of T , then T is i) not diagonalizable ii) diagonalizable iii) nilpotent iv) zero operator	
d)	For a companion matrix characteristic polynomial i) is equal to minimal polynomial ii) is a projection iii) has even degree iv) is not equal to minimal polynomial	
e)	For $a, b \in R$, let $p(x, y) = a^2 x_1 y_1 + ab x_2 y_1 + ab x_1 y_2 + b^2 x_2 y_2$, $x = (x_1, x_2)$, $y = (y_1, y_2) \in R^2$. For what values of a and b does $p: R^2 \times R^2 \rightarrow R$ define an inner product i) $a > 0, b > 0$ ii) $ab > 0$ iii) $a = 0, b = 0$ iv) For no values of a, b	

SECTION B – K3 (CO2)

	Answer any THREE of the following	(3 x 10 = 30)
3	Write about input - output economic models.	

4	Find projection E which projects R^2 onto the subspace spanned by $(1, -1)$ along the subspace spanned by $(1, 2)$.
---	--

5	Let T be a linear operator on R^2 which has matrix in the standard basis $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ and W_1 be subspace spanned by $(1, 0)$. Prove that there is no invariant subspace W_2 under T satisfying $R^2 = W_1 \oplus W_2$
6	Let α be any non-zero vector in V and let p_α be the T -annihilator of α . Let $Z(\alpha; T)$ be the cyclic subspace generated by α . Discuss about the relations between p_α and $Z(\alpha; T)$
7	Let (\cdot, \cdot) be the standard inner product on R^2 . $\alpha = (1, 2), \beta = (-1, 1)$. If γ is a vector such that $(\alpha / \gamma) = -1$ and $(\beta / \gamma) = -1$ then find γ .

SECTION C – K4 (CO3)

	Answer any TWO of the following	(2 x 12.5 = 25)
8	Let T be a linear operator on a finite-dimensional space V . Let c_1, \dots, c_k be the distinct characteristic values of T and let W_i be the null space of $(T - c_i I)$. The following are equivalent.	
	(i) T is diagonalizable.	
	(ii) The characteristic polynomial for T is $f = (x - c_1)^{d_1} \dots (x - c_k)^{d_k}$ and $\dim W_i = d_i, i = 1, \dots, k$.	
	(iii) $\dim W_1 + \dots + \dim W_k = \dim V$	
9	Let T be a linear operator on the finite-dimensional vector space V over the field F . Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Then prove that there is a diagonalizable operator D on V and a nilpotent operator N on V such that	
	(i) $T = D + N$;	
	(ii) $DN = ND$	
	Also prove that the diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T .	
10	Write about companion matrix .	
11	Let W be a finite dimensional subspace of an inner product space V and let E be the projection of V on W . Prove that E is a idempotent linear transformation of V onto W . Also prove that $V = W \oplus W^\perp$	

SECTION D – K5 (CO4)

	Answer any ONE of the following	(1 x 15 = 15)
12	Diagonalize the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$. Also write the minimal polynomial for A	
13	Discuss about the applications of nilpotent matrices and primary decomposition in the construction of Jordon form with an illustration.	

SECTION E – K6 (CO5)

	Answer any ONE of the following	(1 x 20 = 20)
1	Decompose a finite dimensional vector space into cyclic subspaces.	

4	
1 5	For any linear operator T on a finite-dimensional inner product space V , show that there exists a unique linear operator T^* on V such that $(T\alpha \beta) = (\alpha T^*\beta)$ for all α, β in V . Also discuss about the properties of an adjoint operator with an example.

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$